Molecular paleontology and complexity in the last eukaryotic common ancestor
نویسندگان
چکیده
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
منابع مشابه
Complex spliceosomal organization ancestral to extant eukaryotes.
In higher eukaryotes, introns are spliced out of protein-coding mRNAs by the spliceosome, a massive complex comprising five non-coding RNAs (ncRNAs) and about 200 proteins. By comparing the differences between spliceosomal proteins from many basal eukaryotic lineages, it is possible to infer properties of the splicing system in the last common ancestor of extant eukaryotes, the eukaryotic ances...
متن کاملThe Incredible Expanding Ancestor of Eukaryotes
Comparing the genome sequences of free-living organisms in the five eukaryotic supergroups enables predictions to be made about the genome of the last common ancestor of eukaryotes. The genome sequence of the amoeboflagellate Naegleria gruberi reported by Fritz-Laylin et al. (2010) reveals the surprising complexity of this unicellular organism and, by inference, of the last common eukaryotic an...
متن کاملAncestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimon...
متن کاملEvolution of the eukaryotic membrane-trafficking system: origin, tempo and mode.
The emergence of an endomembrane system was a crucial stage in the prokaryote-to-eukaryote evolutionary transition. Recent genomic and molecular evolutionary analyses have provided insight into how this critical system arrived at its modern configuration. The apparent relative absence of prokaryotic antecedents for the endomembrane machinery contrasts with the situation for mitochondria, plasti...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 48 شماره
صفحات -
تاریخ انتشار 2013